![]() |
Snapdragon 845 |
Snapdragon is a suite of system on a chip (SoC) semiconductor products designed and marketed by Qualcomm for mobile devices.The Snapdragon central processing unit (CPU) uses the ARM RISC instruction set, and a single SoC may include multiple CPU cores, a graphics processing unit (GPU), a wireless modem, and other software and hardware to support a smartphone's global positioning system (GPS), camera, gesture recognition and video. Snapdragon semiconductors are embedded in devices of various systems, including Android and Windows Phone devices.They are also used for netbooks, in cars, wearable devices and other devices.
Qualcomm’s Snapdragon range has become synonymous with powering almost all smartphones on the market, while Exynos and Kirin processors are primarily used in Samsung and Huawei smartphones. Hence, major upgrades to the Snapdragon architecture have widespread repercussions for the smartphone industry.
More About processor.
The Snapdragon series’s chip architecture, which has historically featured a mix of custom and semi-custom cores based on ARM designs, has improved dramatically over the past decade. Qualcomm’s Scorpion CPU core was followed by its custom Krait CPU core, starting with the Snapdragon S4 in 2012. In 2015, Qualcomm moved to a combo of 64-bit stock ARM Cortex-A57 and Cortex-A53 cores with the Snapdragon 810 and 808, retiring Krait in the process. But only a year later, Qualcomm was back in the custom CPU core game with the Snapdragon 820. It marked the debut of Kryo (featured in comparisons below), which placed a heavy emphasis on floating point IPC (Instructions Per Clock) in single-threaded performance.
Kryo’s CPU performance and power efficiency improved on Qualcomm’s rather underwhelming implementation of the ARM Cortex-A57 in the Snapdragon 808 and 810, but benchmarks showed that it couldn’t match ARM’s 2016 core, the Cortex-A72, in terms of integer IPC. That said, it was a redeeming release for Qualcomm; its predecessor had tarnished the company’s reputation among some reviewers who, in many cases, couldn’t ignore the heat and throttling problems seen on many Snapdragon 810 devices, particularly earlier models like the HTC One M9 and LG G Flex 2.
With the Snapdragon 835, Qualcomm changed things up again with “semi-custom” CPU cores that took advantage of the “Built on ARM Cortex Technology” license. The Snapdragon 835 features Kryo 280 “performance” cores based on ARM’s A73 design that are faster than the company’s last-gen fully-custom predecessors in terms of integer instructions per clock (IPC), but regress when it comes to floating-point math (FPM). Still, the Snapdragon 835 remains one of the fastest system-on-chips in the Android market, and it’s a substantial leap forward from a technological standpoint, bringing better power efficiency and thermal stability as well as advancements in peripheral components.
Benchmark
The benchmarks used were Geekbench 4, AnTuTu, PCMark, GFXBench 4.0, and 3DMark, among others. The performance numbers and comparisons say the same thing – the SD845 will perform 25 to 30 percent faster and better than the SD835. If you want to check out the numbers for yourself, click on the source link below. The analysis of the benchmarks are quite in-depth and should be good for Android geeks like you and me.
Overall, Geekbench 4 shows a healthy (if unspectacular) year-on-year improvement. But crucially, the scores aren’t enough to beat Apple’s A11 Bionic system-on-chip, which scores over 4,200 in single-core tests and over 10,100 in multi-core tests. Ever since Apple began running away with chip benchmarks a few years ago, the gap has only grown larger between it and Qualcomm, to the point where latter’s claims of 25% to 30% year-on-year improvements with each Snapdragon revision have become a sign of its inability to topple Apple’s custom silicon in this regard.
Of course, there are some counter-arguments that serve to undermine the comparison. The seemingly insurmountable gap between Qualcomm and Apple’s system-on-chips shrinks when you consider metrics such as performance per square millimeter, for instance, or when you look at the particular goals of each company. Qualcomm intends the Snapdragon 845 to have a performance-to-watt-to-square-millimeter ratio that best serves applications not just on smartphones, but also on virtual reality headsets, connected devices, and Windows computers. Apple designs its chipsets primarily, and almost exclusively, with one device in mind: the iPhone.
Arguments and counter-arguments on that point aside, the performance increment for the Snapdragon 845 is around what we anticipated and what’s been claimed by Qualcomm. Just don’t expect the CPU capabilities of the 845 (and certainly not its Geekbench score) to match Apple’s current and upcoming chipsets.
GPU performance
One of the larger changes that the Snapdragon 845 brings with itself is a new GPU architecture. Qualcomm has been traditionally very secretive when talking about details of their Adreno GPUs and the Adreno 630 is no different here. Truth to be told, the only real sign that we’re looking at more major architectural changes is the transition from the Adreno 5xx series to the Adreno 6xx series.
While the Adreno 630 remains largely a black box we do know what Qualcomm’s claims for the GPU are. We’re looking at overall 30% better performance and a 30% improvement in power. The latter point is something that Qualcomm liked to showcase both at the announcement of the Snapdragon 845 as well as for this benchmarking event, however it needs to be clarified that the power improvement is measured at iso-performance levels. Naturally because the 845 targets higher performance points the power would be higher than at 835-levels of performance. Regardless of this marketing nit-pick, we’re still expecting an efficiency increase at peak performance levels if the resulting absolute power remains at the same levels as the Snapdragon 835.
No comments:
Post a Comment